Absorbance Spectroscopy | Absorbance Explained (2024)

In absorbance spectroscopy(also known asabsorption spectroscopy), a spectrometeris used to directly measure how much light is absorbed by a sample as a function of wavelength.

Quantifying the absorbance of light by an atom or molecule can provide important information about the moleculeselectronic structure. Depending on the sample, absorbance measurements can also give you key insights into other material properties, such as sample concentration, phase changes, or composition changes.

Spectrometer and AccessoriesLow Price Optical SpectrometerLight SourcesAnd MoreComplete Kits for £2,400

Contents

  • Absorbance Theory
  • Measuring Absorbance
  • Defining Absorbance
    • Molar Attenuation Coefficient
    • Absorption Coefficient
    • Absorbance Units
  • Absorbance Uses
  • Resources and References

Absorbance Theory

Band theory describes how electrons are organised within a solid. This can be useful when discussing different properties of a solid (conductors, semiconductors, or metals).

Within an atom, electrons can exist in regions around the nucleus known as orbitals. Depending on the electronic structure of an atom, these orbitals (or energy levels) can be filled, partially filled, or empty. The wavelength of light that can be absorbed by a material is dependent on these different energy levels and the electronic distribution within this material.

Absorption occurs when the the energy of the incoming photonis equal or larger than energy difference (ΔE) between the highest occupied molecular orbit (hom*o) and the lowest unoccupied molecular orbit (LUMO).

Absorbance Spectroscopy | Absorbance Explained (2)

If the photon energy is high enough,it can be absorbed by an electron in the hom*o and will be excited into a higher energy state.

Absorbance Spectroscopy | Absorbance Explained (3)

The wavelengths of the absorbed light correspond to energy through the equation.

Absorbance Spectroscopy | Absorbance Explained (4)

When multiple atoms come together to form molecules, energy levels become more complex. For example, the types of electronic transitions that are allowed will often vary with different material properties.Measuring the wavelengths at which absorbance occurswill therefore tell you a lot about the electronic properties of a material, molecule or thin film.

Absorbance Measurement

To measure absorbance requires a broadband light source and a spectrometer with appropriate spectral range. Absorbance values are closely related to transmission measurements, as in both cases you actually measure the transmitted light.

Absorbance Spectroscopy | Absorbance Explained (5)

As light is propagated through a sample and absorbed, its intensity will fall exponentially with distance. You can calculate absorbance by the comparing the reference light spectrum, I0, tothe detected light that has passed through the sample, I, through this equation.

Absorbance Spectroscopy | Absorbance Explained (6)

Defining Absorbance

Absorbance is a relative measurement so is therefore unitless. This absorbance, A, can be defined in a number of different ways for different samples.

Molar Attenuation Coefficient

When you measure the absorbance spectrum of a solution, it is important toat which wavelengths maximum absorbance occurs. Identifying these wavelengths can can help you determine certain molecular properties of your sample. It is also important to note the strength of absorbance at these wavelengths.

By looking at these peaks, you can establish the molar attenuation coefficient, ε. This has also been referred to historically as the molar extinction coefficient and is also known as the molar absorptivity coefficient. This will tell you about the kinds of electronic transitions that are occurring within your sample associated. For allowed transitions, ε > 1000 whereas for forbidden transitions, ε < 100.

The molar attenuation coefficient, ε, is featured in Beer Lambert's Law:

Absorbance Spectroscopy | Absorbance Explained (7)

Where A is absorbance, c is the molar concentration of the molecule in solution, and l is the path length through the sample (often the width of the cuvette, or the total film). You can use this calculation to measure the concentration of a molecule in a thin film. The graphs below show the variation in absorbance intensity with concentration. This is a linear relationship.

Absorbance Spectroscopy | Absorbance Explained (8)Absorbance Spectroscopy | Absorbance Explained (9)

Molar attenuation coefficient has property has dimensions of

Absorbance Spectroscopy | Absorbance Explained (10)

Therefore, the SI units of the molar absorptivity coefficient is m2M-1 or cm2M-1.

Absorption Coefficient

For bulk solids, you can define absorbance in terms of an absorption coefficient, α(λ). This is a property of a solid material and is wavelength dependent. The absorption coefficient, α(λ) relates to absorbance measurements through the following equation:

Absorbance Spectroscopy | Absorbance Explained (11)

Here, d is the distance light has travelled into (or through) the bulk solid.

The SI units of the absorption coefficient of a bulk solid are m-1 or cm-1.

Absorbance Units

PropertyUnitsSample Type
AbsorbanceUnitlessGeneral
Absorption Coefficientm-1Bulk Solid
Molar Absorptivity Coefficientm2M-1Molecule in solution

Absorbance Uses

You can measure UV-Vis absorbance to investigate the suitability of a material for a specific purpose or to determine its material properties. For example:

  • Organic dyes require high absorbance over a small wavelength range so that only light of a matching colour is emitted from the dye, e.g. for a yellow dye, blue light (435 - 480 nm) must be absorbed.
  • Materials that convert visible light into different forms of energy (such as solar cells, photosensors) will require high absorption, ideally across the visible region. These materials frequently have desirable band gaps, which can be determined using UV-Vis spectroscopy.
  • Transparent materials need to absorb as little visible light as possible. You can confirm this using UV-Vis spectroscopy.
  • In organic compounds, UV-vis spectroscopy can help illuminate the amount of conjugated pi bonds in a molecule.
Spectrometer and AccessoriesLow Price Optical SpectrometerLight SourcesAnd MoreComplete Kits for £2,400

References and Resources

Absorbance Measurement

Absorbance measurements are crucial in many areas of scientific research. This article describes how to take an absorbance measurement using an optical spectrometer.

Read more...

Choosing a Spectrometer

When researching optical materials, an optical spectrometer is an essential instrument which enables you to characterize your materials quickly and easily. It is a powerful tool that can be used to measure the properties of light such as wavelength and intensity

Read more...

References

  1. Rocha, F. S., Gomes, A. J., Lunardi, C. N., Kaliaguine, S., & Patience, G. S. (2018). Experimental methods in chemical engineering: Ultraviolet visible spectroscopy-UV-vis. The Canadian Journal of Chemical Engineering, 96(12), 2512–2517. DOI:10.1002/cjce.23344
  2. Hestand, N. J., & Spano, F. C. (2018). Expanded theory of H- and J-molecular aggregates: The effects of vibronic coupling and intermolecular charge transfer. Chemical Reviews, 118(15), 7069–7163. DOI: 10.1021/acs.chemrev.7b00581
  3. Makuła, P., Pacia, M., & Macyk, W. (2018). How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–vis spectra. The Journal of Physical Chemistry Letters, 9(23), 6814–6817. DOI: 10.1021/acs.jpclett.8b02892
  4. Chen, J., Zhou, S., Jin, S., Li, H., & Zhai, T. (2016). Crystal organometal halide perovskites with promising optoelectronic applications. Journal of Materials Chemistry C, 4(1), 11–27. DOI: 10.1039/c5tc03417e

Contributing Authors

Written by

Dr. Mary O'Kane

Application Scientist

I am an expert in absorbance spectroscopy, and I'll provide you with a comprehensive understanding of the concepts mentioned in the article. My knowledge extends beyond the general information presented, allowing me to delve into the intricacies of absorbance theory and measurement techniques.

Absorbance Spectroscopy Overview: Absorbance spectroscopy, also known as absorption spectroscopy, involves using a spectrometer to directly measure the amount of light absorbed by a sample across different wavelengths. This technique is instrumental in understanding the electronic structure of molecules.

Band Theory and Electronic Structure: The article touches on band theory, which explains how electrons are organized within solids. Electrons occupy orbitals around the nucleus, and the energy levels of these orbitals determine the wavelengths of light that can be absorbed. Absorption occurs when the energy of incoming photons matches the energy difference between the highest occupied molecular orbit (hom*o) and the lowest unoccupied molecular orbit (LUMO).

Absorbance Measurement: To measure absorbance, a broadband light source and a spectrometer with an appropriate spectral range are essential. The absorbance values are closely related to transmission measurements, and absorbance is calculated by comparing the reference light spectrum (I0) to the detected light that has passed through the sample (I).

Defining Absorbance: Absorbance is a relative and unitless measurement. It can be defined in various ways for different samples, and its calculation involves the comparison of transmitted light intensities.

Molar Attenuation Coefficient (ε): Identifying the wavelengths of maximum absorbance helps determine molecular properties. The molar attenuation coefficient, ε, quantifies the strength of absorbance at these wavelengths. It is a key parameter in Beer Lambert's Law, allowing the measurement of a molecule's concentration in a thin film.

Absorption Coefficient (α): For bulk solids, absorbance is defined in terms of an absorption coefficient, α(λ), which is wavelength-dependent. This coefficient relates to absorbance measurements, considering the distance light travels into the bulk solid.

Absorbance Units: The article outlines the units for absorbance and absorption coefficients, emphasizing the unitless nature of absorbance. The molar absorptivity coefficient (ε) has dimensions of m²M⁻¹ or cm²M⁻¹, while the absorption coefficient (α) has units of m⁻¹ or cm⁻¹.

Absorbance Uses: UV-Vis absorbance measurements serve various purposes, such as investigating material suitability for specific applications. Examples include determining band gaps for materials like solar cells, assessing conjugated pi bonds in organic compounds, and ensuring transparency in transparent materials.

This detailed overview provides a solid foundation for understanding absorbance spectroscopy and its applications in material analysis and characterization.

Absorbance Spectroscopy | Absorbance Explained (2024)

FAQs

Absorbance Spectroscopy | Absorbance Explained? ›

In absorbance spectroscopy

absorbance spectroscopy
Absorption spectroscopy is employed as an analytical chemistry tool to determine the presence of a particular substance in a sample and, in many cases, to quantify the amount of the substance present. Infrared and ultraviolet–visible spectroscopy are particularly common in analytical applications.
https://en.wikipedia.org › wiki › Absorption_spectroscopy
(also known as absorption spectroscopy), a spectrometer is used to directly measure how much light is absorbed by a sample as a function of wavelength. Quantifying the absorbance of light by an atom or molecule can provide important information about the molecules electronic structure.

How do you interpret absorbance on a spectrophotometer? ›

Absorbance and transmittance are related by the equation, A = -log T. So, the spectrophotometer measures T, then calculates A, which is displayed on the output reader. The higher the amount of absorbance means less light is being transmitted, which results in a higher output reading.

How does absorbance spectroscopy work? ›

Absorption spectroscopy is spectroscopy that involves techniques that measure the absorption of electromagnetic radiation, as a function of frequency or wavelength, due to its interaction with a sample. The sample absorbs energy, i.e., photons, from the radiating field.

How do you explain absorbance? ›

Absorbance is calculated based on either the amount of light reflected or scattered by a sample or by the amount transmitted through a sample. If all light passes through a sample, none was absorbed, so the absorbance is zero and the transmission is 100%.

What does an absorbance spectrum tell you? ›

Absorption spectra (also known as UV-Vis spectra, absorbance spectra and electronic spectra) show the change in absorbance of a sample as a function of the wavelength of incident light (Figure 1), and are measured using a spectrophotometer.

What is a good absorbance value in spectrophotometer? ›

For most spectrometers and colorimeters, the useful absorbance range is from 0.1 to 1. Absorbance values greater than or equal to 1.0 are too high. If you are getting absorbance values of 1.0 or above, your solution is too concentrated.

What does an absorbance of 1 mean? ›

An absorbance of 1 happens when 90% of the light at that wavelength has been absorbed, which means that the intensity is 10% of what it would otherwise be. In that case, I1/I0 is 10/100 = 0.1) and -log10 of 0.1 is 1.

What does a spectrophotometer measure when analyzing a sample's absorption of light? ›

A spectrophotometer is an instrument that measures the amount of photons (the intensity of light) absorbed after it passes through sample solution. With the spectrophotometer, the amount of a known chemical substance (concentrations) can also be determined by measuring the intensity of light detected.

What are the units for absorbance on a spectrophotometer? ›

Although absorbance does not have true units, it is quite often reported in "Absorbance Units" or AU. Accordingly, optical density is measured in ODU, which are equivalent to AU cm​−1​.

References

Top Articles
Latest Posts
Article information

Author: Dong Thiel

Last Updated:

Views: 5303

Rating: 4.9 / 5 (79 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Dong Thiel

Birthday: 2001-07-14

Address: 2865 Kasha Unions, West Corrinne, AK 05708-1071

Phone: +3512198379449

Job: Design Planner

Hobby: Graffiti, Foreign language learning, Gambling, Metalworking, Rowing, Sculling, Sewing

Introduction: My name is Dong Thiel, I am a brainy, happy, tasty, lively, splendid, talented, cooperative person who loves writing and wants to share my knowledge and understanding with you.